skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saran, Nitika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reconfigurable datacenter networks use fast optical circuit switches to provide high bandwidths at low cost, therefore emerging as a compelling alternative to packet switching. These switches offer micro- and nano-second reconfiguration, and reacting to demand at this time scale is infeasible. Proposed designs have therefore largely been oblivious, supporting arbitrary traffic patterns. However, this imposes a fundamental latency-throughput tradeoff that significantly limits the benefits of these switches. In this paper, we illustrate the feasibility of semi-oblivious reconfigurable datacenter networks that periodically adapt to large-scale structural patterns in traffic. We argue that such patterns are predictable in modern datacenters, that optimizing for them can provide latency-throughput scaling superior to oblivious designs, and that existing fast circuit-switched technologies support coarse-grained flexibility to adapt to these patterns. 
    more » « less
    Free, publicly-accessible full text available November 18, 2025
  2. Circuit-switched technologies have long been proposed for handling high-throughput traffic in datacenter networks, but recent developments in nanosecond-scale reconfiguration have created the enticing possibility of handling low-latency traffic as well. The novel Oblivious Reconfigurable Network (ORN) design paradigm promises to deliver on this possibility. Prior work in ORN designs achieved latencies that scale linearly with system size, making them unsuitable for large-scale deployments. Recent theoretical work showed that ORNs can achieve far better latency scaling, proposing theoretical ORN designs that are Pareto optimal in latency and throughput. In this work, we bridge multiple gaps between theory and practice to develop Shale, the first ORN capable of providing low-latency networking at datacenter scale while still guaranteeing high throughput. By interleaving multiple Pareto optimal schedules in parallel, both latency- and throughput-sensitive flows can achieve optimal performance. To achieve the theoretical low latencies in practice, we design a new congestion control mechanism which is best suited to the characteristics of Shale. In datacenter-scale packet simulations, our design compares favorably with both an in-network congestion mitigation strategy, modern receiver-driven protocols such as NDP, and an idealized analog for sender-driven protocols. We implement an FPGA-based prototype of Shale, achieving orders of magnitude better resource scaling than existing ORN proposals. Finally, we extend our congestion control solution to handle node and link failures. 
    more » « less
  3. In a landmark 1981 paper, Valiant and Brebner gave birth to the study of oblivious routing and, simultaneously, introduced its most powerful and ubiquitous method: Valiant load balancing (VLB). By routing messages through a randomly sampled intermediate node, VLB lengthens routing paths by a factor of two but gains the crucial property of obliviousness: it balances load in a completely decentralized manner, with no global knowledge of the communication pattern. Forty years later, with datacenters handling workloads whose communication pattern varies too rapidly to allow centralized coordination, oblivious routing is as relevant as ever, and VLB continues to take center stage as a widely used — and in some settings, provably optimal — way to balance load in the network obliviously to the traffic demands. However, the ability of the network to rapidly reconfigure its interconnection topology gives rise to new possibilities. In this work we revisit the question of whether VLB remains optimal in the novel setting of reconfigurable networks. Prior work showed that VLB achieves the optimal tradeoff between latency and guaranteed throughput. In this work we show that a strictly superior latency-throughput tradeoff is achievable when the throughput bound is relaxed to hold with high probability. The same improved tradeoff is also achievable with guaranteed throughput under time-stationary demands, provided the latency bound is relaxed to hold with high probability and that the network is allowed to be semi-oblivious, using an oblivious (randomized) connection schedule but demand-aware routing. We prove that the latter result is not achievable by any fully-oblivious reconfigurable network design, marking a rare case in which semi-oblivious routing has a provable asymptotic advantage over oblivious routing. Our results are enabled by a novel oblivious routing scheme that improves VLB by stretching routing paths the minimum possible amount — an additive stretch of 1 rather than a multiplicative stretch of 2 — yet still manages to balance load with high probability when either the traffic demand matrix or the network’s interconnection schedule are shuffled by a uniformly random permutation. To analyze our routing scheme we prove an exponential tail bound which may be of independent interest, concerning the distribution of values of a bilinear form on an orbit of a permutation group action. 
    more » « less